Accurate LiDAR-camera calibration is crucial for multi-sensor systems. However, traditional methods often rely on physical targets, which are impractical for real-world deployment. Moreover, even carefully calibrated extrinsics can degrade over time due to sensor drift or external disturbances, necessitating periodic recalibration. To address these challenges, we present a Targetless LiDAR–Camera Calibration (TLC-Calib) that jointly optimizes sensor poses with a neural Gaussian–based scene representation. Reliable LiDAR points are frozen as anchor Gaussians to preserve global structure, while auxiliary Gaussians prevent local overfitting under noisy initialization. Our fully differentiable pipeline with photometric and geometric regularization achieves robust and generalizable calibration, consistently outperforming existing targetless methods on KITTI-360, Waymo, and FAST-LIVO2, and surpassing even the provided calibrations in rendering quality.